
Standardizing Security: The case of
threshold cryptography

Ran Canetti

Boston University

Goals for standardization

• Creating agreement on an object: Making the world more efficient
• Common language

• (Quarter Pounder vs. Royale with Cheese)
• Interoperability

• Electric plugs
• IETF

• Modular design
• Program APIs

• Benchmarking: setting common levels of quality and operation

• Protecting business interests

• Getting people from different backgrounds to brainstorm and agree on what works

Standardizing cryptographic protocols

Complex object:
• Several parties, different concerns → security harder to capture

• Depends on other mechanisms:
• Networking stack

• Actual network properties

• Execution environment

Where to draw the line?

Standardize Threshold Cryptography?

• Seriously? Let’s crawl before we run marathons…

Standardize Threshold Cryptography?

• Seriously? Let’s crawl before we run marathons…

But people are using it in practice, and we’ll have to live with whatever
they come up with…

Standardize Threshold Cryptography?

• Seriously? Let’s crawl before we run marathons…

But people are using it in practice, and we’ll have to live with whatever
they come up with…

➔ Let’s do it right !

Standardizing Threshold Cryptography:
Suggested guidelines
• Concentrate on a small set of primitives (eg. threshold signatures)

• Do we want to concentrate on specific verification algorithms for interoperability?
If so then which ones? (ECDSA? Schorr? BLS? EDDSA?) or leave it open?

• Agree on clear APIs for the primitive:
• With the calling program (the “user”)

• When should a signature be generated?
• With OS utilities and service programs

• Memory, cache
• Network (channel assumptions?)

• Agree on a set of security properties
• Unforgeability (for signatures) Sem. Security (for enc)?
• Under what attacks? (Chosen messae/ciphertext? delay? MiM? Adaptive?

Mobile/proactive?)
• Distributional equality with some standardized spec? (and why?)
• Composability/ Modularity?

Standardizing Threshold Cryptography:
Suggested guidelines

• Once we agree on these, can have a competition for
• Algorithms

• Implementations

• Proofs of cryptographic security

• Security analysis of implementation

The UC approach:
Specification via an Ideal-Service, with composition
[Universally composable security, C20]

Idea:

• Security of a system is reflected only in its effects on the rest of the external
environment.

• Therefore to capture the desired security of system P:

• Write an “ideal system” F that captures the desired effects: Functionality and security

• The proof of security will assert that P can be made to “looks the same” as F to an
external environment.

Note: F need not be realistically implemented. All we care about is its responses to the
environment.

The ideal threshold signature functionality

[Given: Identities 𝑆 = 𝑆1, …𝑆𝑛 of signatories, access structure 𝐴: 0,1 𝑛 → {0,1}]

Keygen: When receiving input “KeyGen” from a subset 𝛼 ⊆ 𝑆 s.t. 𝐴 𝛼 = 1:

obtain from Adv a verification key 𝑉𝐾 and output 𝑉𝐾 to all.

Sign: When receiving input “Sign m” from* a subset 𝛼 ⊆ 𝑆 s.t. 𝐴 𝛼 = 1:

hand m to Adv, obtain a signature string 𝜎, add (𝑚, 𝜎, 1) to local database 𝐷𝐵 and output 𝜎 to all.

Verify: When receiving input “Verify (𝑉𝐾,𝑚, 𝜎) ” from some party 𝑉:

If 𝑚,𝜎, 𝑏 ∈ 𝐷𝐵 then return 𝑏 to 𝑉

Else if 𝑚,𝜎 ′, 1 ∉ 𝐷𝐵 for any 𝜎′ then return 0 to 𝑉  unforgeability

Else hand (𝑚, 𝜎) to Adv, obtain 𝑏 ∈ 0,1 , add 𝑚,𝜎, 𝑏 to 𝐷𝐵 , and return 𝑏 to 𝑉.

Corrupt: When Adv asks to corrupt / uncorrupt 𝑆𝑖, mark 𝑆𝑖 as corrupted/uncorrupted.

While 𝑆𝑖 is corrupted, Adv is allowed to approve signing/keygen instead of 𝑆𝑖 .

When asked by 𝑆𝑖 if corrupted, answer truthfully.

Provides:

• Clear API with user protocol

• Clear functionality

• Clear security properties

• Composability. Modularity

Does not provide:

• APIs with OS, network services. (Can be added…)

The ideal threshold signature functionality

Can do the same for threshold decryption…

